Extreme Wave Loading on Offshore Wave Energy Devices using CFD

نویسنده

  • Jan Westphalen
چکیده

Two commercial Navier-Stokes solvers are applied to wave-wave and wave-structure interaction problems leading to the final application of simulating a single float of the wave energy converter (WEC) Manchester Bobber in extreme waves and a fixed section of the Pelamis in regular waves. First the two software packages CFX and STAR CCM+ are validated against measured results from physical tank tests concerning the interaction of 3 non-linear focused wave groups of different steepness (Ning et al. 2007). The agreement for all of these cases is very good and could even be improved from first order to second order wave setup at the wavemaker. However, in preliminary regular wave tests, the damping of the waves is identified to be an issue, which is the reason for focusing the waves and placing the structures in the following experiments approximately one wavelength behind the wavemaker. The interaction of fixed vertical and horizontal cylinders in regular waves are simulated concerning the forces on the structures (Kriebel 1998, Dixon et al. 1979). For the horizontal cylinder non-linear force oscillations of double the wave frequency could be modelled in good agreement with physical tank data, where linearised models failed. For the vertical cylinder the problem of the secondary load cycle due to a backward-breaking wave behind the cylinder is of special interest (Stansberg 1997, Chaplin et al. 1997). Here, the horizontal forces on a slender cylinder with a diameter approximately equal to the wave height are simulated successfully. Furthermore, the highly non-linear wave run-up in front of the cylinder is resolved well in the numerical approach. The next set of simulations includes rigid body motion. Here, the forced oscillations of a cone shaped body near the still water surface is simulated. These results are compared with test data published by Drake et al. (2008). For these cases the non-linearity of the experiments is discussed by comparing the sum and differences of the force and surface elevation time histories for a set of simulations with opposite excursion of the cone. The hydrodynamic forces on the cone surface are resolved in very good agreement. The solution of the surface elevation close to the

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Development of a mathematical model to design an offshore wind and wave hybrid energy system

Fossil Fuels are always considered as environmental pollutants. On the other hand, the political and economic situations highly affect the price of these fuels. Offshore wind and wave, as renewable energy sources, represent the better alternatives for electricity generation. Therefore, it is necessary that wind speeds effectively be estimated due to the absence of field measurements of the wind...

متن کامل

بررسی پاسخ سکوهای فراسـاحلی ثابت فلزی مجهز به آلـیاژ حافظه دار شکلی درعمق های مختلف تحت نیروی امواج

In this research, the response of fixed offshore platforms equipped with shape memory alloy elements at the different depths under extreme wave loading are taken into account. For this purpose platforms located in different water depths 70, 110 and 150 has been considered. At first for evaluation of the nonlinear behavior of three platforms, pushover analysis using SACS has been engaged. Then n...

متن کامل

Experimental Evaluation of IRWEC1, a Novel Offshore Wave Energy Converter

This paper describes the innovative offshore point-absorber wave energy converter (WEC), IRWEC1, under development by the Hydrodynamics, Acoustics and Marine propulsion Group at Babol Noshirvani University of Technology. Totally enclosed in an outer shell, with no external moving parts, IRWEC1 is completely sealed which make it a robust and trustable system. Important motion for this WEC is the...

متن کامل

EXPERIMENTAL INVESTIGATION OF OFFSHORE WAVE BUOY PERFORMANCE

The important characteristic of sea waves is their high energy density, which is the highest among renewable energy sources. Having up to 2700 km. of shoreline, Iran has a great potential in construction of offshore wave buoys (hereafter called OWB). In this article a OWB model with the possibility of assembling different buoy configurations is introduced. The system is exposed to regular and i...

متن کامل

What can wave energy learn from offshore oil and gas?

This title may appear rather presumptuous in the light of the progress made by the leading wave energy devices. However, there may still be some useful lessons to be learnt from current 'offshore' practice, and there are certainly some awful warnings from the past. Wave energy devices and the marine structures used in oil and gas exploration as well as production share a common environment and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011